Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra §2-6. Linear Transformations

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $02 / 02 / 2021$)

Linear Transformations

Finding the Matrix of a Linear Transformation

Composition of Linear Transformations

Rotations and Reflections in \mathbb{R}^{2}

Linear Transformations

Finding the Matrix of a Linear Transformation

Composition of Linear Transformations

Rotations and Reflections in \mathbb{R}^{2}

Linear Transformations

Linear Transformations

Definition

A transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation if it satisfies the following two properties for all $\vec{x}, \vec{y} \in \mathbb{R}^{\mathrm{n}}$ and all (scalars) $\mathrm{a} \in \mathbb{R}$.

Linear Transformations

Definition

A transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation if it satisfies the following two properties for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and all (scalars) $a \in \mathbb{R}$.

1. $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$ (preservation of addition)

Linear Transformations

Definition

A transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation if it satisfies the following two properties for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and all (scalars) $a \in \mathbb{R}$.

1. $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
2. $T(a \vec{x})=a T(\vec{x})$ (preservation of addition)
(preservation of scalar multiplication)

Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation, and let $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$.

Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation, and let $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. Since T preserves scalar multiplication,

Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation, and let $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. Since T preserves scalar multiplication,

1. $\mathrm{T}(0 \overrightarrow{\mathrm{x}})=0 \mathrm{~T}(\overrightarrow{\mathrm{x}})$ implying $\mathrm{T}(0)=0$, so T preserves the zero vector.

Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation, and let $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. Since T preserves scalar multiplication,

1. $T(0 \overrightarrow{\mathrm{x}})=0 \mathrm{~T}(\overrightarrow{\mathrm{x}})$ implying $\mathrm{T}(0)=0$, so T preserves the zero vector.
2. $T((-1) \vec{x})=(-1) T(\vec{x})$, implying $T(-\vec{x})=-T(\vec{x})$, so T preserves the negative of a vector.

Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation, and let $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. Since T preserves scalar multiplication,

1. $T(0 \vec{x})=0 T(\vec{x})$ implying $T(0)=0$, so T preserves the zero vector.
2. $T((-1) \vec{x})=(-1) T(\vec{x})$, implying $T(-\vec{x})=-T(\vec{x})$, so T preserves the negative of a vector.

Suppose $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}$ are vectors in \mathbb{R}^{n} and for some $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}} \in \mathbb{R}$.

$$
\overrightarrow{\mathrm{y}}=\mathrm{a}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{a}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{a}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}} .
$$

Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation, and let $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. Since T preserves scalar multiplication,

1. $T(0 \vec{x})=0 T(\vec{x})$ implying $T(0)=0$, so T preserves the zero vector.
2. $T((-1) \vec{x})=(-1) T(\vec{x})$, implying $T(-\vec{x})=-T(\vec{x})$, so T preserves the negative of a vector.

Suppose $\vec{x}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}$ are vectors in \mathbb{R}^{n} and for some $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}} \in \mathbb{R}$.

$$
\overrightarrow{\mathrm{y}}=\mathrm{a}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{a}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{a}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}
$$

\Downarrow
3.

$$
\begin{aligned}
\mathrm{T}(\overrightarrow{\mathrm{y}}) & =\mathrm{T}\left(\mathrm{a}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{a}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{a}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right) \\
& =\mathrm{a}_{1} \mathrm{~T}\left(\overrightarrow{\mathrm{x}}_{1}\right)+\mathrm{a}_{2} \mathrm{~T}\left(\overrightarrow{\mathrm{x}}_{2}\right)+\cdots+\mathrm{a}_{\mathrm{k}} \mathrm{~T}\left(\overrightarrow{\mathrm{x}}_{\mathrm{k}}\right),
\end{aligned}
$$

i.e., T preserves linear combinations.

Problem

Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear transformation such that

$$
\mathrm{T}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
4 \\
4 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad \mathrm{T}\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]=\left[\begin{array}{r}
4 \\
5 \\
-1 \\
5
\end{array}\right] .
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear transformation such that

$$
\mathrm{T}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
4 \\
4 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad \mathrm{T}\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]=\left[\begin{array}{r}
4 \\
5 \\
-1 \\
5
\end{array}\right] \text {. Find } \mathrm{T}\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right] .
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear transformation such that

$$
\mathrm{T}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
4 \\
4 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad \mathrm{T}\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]=\left[\begin{array}{r}
4 \\
5 \\
-1 \\
5
\end{array}\right] \text {. Find } \mathrm{T}\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right] .
$$

Solution
The only way it is possible to solve this problem is if

$$
\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right] \text { is a linear combination of }\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear transformation such that

$$
\mathrm{T}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
4 \\
4 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad \mathrm{T}\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]=\left[\begin{array}{r}
4 \\
5 \\
-1 \\
5
\end{array}\right] \text {. Find } \mathrm{T}\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right] .
$$

Solution
The only way it is possible to solve this problem is if

$$
\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right] \text { is a linear combination of }\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right],
$$

i.e., if there exist $a, b \in \mathbb{R}$ so that

$$
\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right]=\mathrm{a}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]+\mathrm{b}\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right] .
$$

Solution (continued)
To find a and b, solve the system of three equations in two variables:

$$
\left[\begin{array}{ll|r}
1 & 4 & -7 \\
3 & 0 & 3 \\
1 & 5 & -9
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rr|r}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

Thus $\mathrm{a}=1, \mathrm{~b}=-2$, and

$$
\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]-2\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right] .
$$

Solution (continued)
We now use that fact that linear transformations preserve linear combinations, implying that

$$
\mathrm{T}\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right]=\mathrm{T}\left(\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]-2\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]\right)
$$

Solution (continued)
We now use that fact that linear transformations preserve linear combinations, implying that

$$
\begin{aligned}
\mathrm{T}\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right] & =\mathrm{T}\left(\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]-2\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]\right) \\
& =\mathrm{T}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]-2 \mathrm{~T}\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]
\end{aligned}
$$

Solution (continued)
We now use that fact that linear transformations preserve linear combinations, implying that

$$
\begin{aligned}
\mathrm{T}\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right] & =\mathrm{T}\left(\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]-2\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]\right) \\
& =\mathrm{T}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]-2 \mathrm{~T}\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
4 \\
4 \\
0 \\
-2
\end{array}\right]-2\left[\begin{array}{r}
4 \\
5 \\
-1 \\
5
\end{array}\right]=\left[\begin{array}{r}
-4 \\
-6 \\
2 \\
-12
\end{array}\right]
\end{aligned}
$$

Solution (continued)
We now use that fact that linear transformations preserve linear combinations, implying that

$$
\begin{aligned}
\mathrm{T}\left[\begin{array}{r}
-7 \\
3 \\
-9
\end{array}\right] & =\mathrm{T}\left(\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]-2\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right]\right) \\
& =\mathrm{T}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]-2 \mathrm{~T}\left[\begin{array}{l}
4 \\
0 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
4 \\
4 \\
0 \\
-2
\end{array}\right]-2\left[\begin{array}{r}
4 \\
5 \\
-1 \\
5
\end{array}\right]=\left[\begin{array}{r}
-4 \\
-6 \\
2 \\
-12
\end{array}\right]
\end{aligned}
$$

Therefore, $\mathrm{T}\left[\begin{array}{r}-7 \\ 3 \\ -9\end{array}\right]=\left[\begin{array}{r}-4 \\ -6 \\ 2 \\ -12\end{array}\right]$.

Problem

Let $\mathrm{T}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
\mathrm{T}\left[\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right] \quad \text { and } \quad \mathrm{T}\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right] . \text { Find } \mathrm{T}\left[\begin{array}{r}
1 \\
3 \\
-2 \\
-4
\end{array}\right] .
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
\mathrm{T}\left[\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right] \quad \text { and } \quad \mathrm{T}\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right] . \text { Find } \mathrm{T}\left[\begin{array}{r}
1 \\
3 \\
-2 \\
-4
\end{array}\right] .
$$

Solution (Final Answer)

$$
\mathrm{T}\left[\begin{array}{r}
1 \\
3 \\
-2 \\
-4
\end{array}\right]=\left[\begin{array}{r}
-8 \\
3 \\
-3
\end{array}\right]
$$

Theorem
Every matrix transformation is a linear transformation.

Theorem
Every matrix transformation is a linear transformation.

Theorem

Every matrix transformation is a linear transformation.

Proof.

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation induced by the $m \times n$ matrix A,

Theorem

Every matrix transformation is a linear transformation.

Proof.

Suppose $T: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a matrix transformation induced by the $\mathrm{m} \times \mathrm{n}$ $\operatorname{matrix} A$, i.e., $T(\vec{x})=A \vec{x}$ for each $\vec{x} \in \mathbb{R}^{n}$.

Theorem

Every matrix transformation is a linear transformation.

Proof.

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation induced by the $m \times n$ matrix A, i.e., $T(\vec{x})=A \vec{x}$ for each $\vec{x} \in \mathbb{R}^{n}$. Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and let $a \in \mathbb{R}$.

Theorem

Every matrix transformation is a linear transformation.

Proof.

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation induced by the $m \times n$ matrix A, i.e., $T(\vec{x})=A \vec{x}$ for each $\vec{x} \in \mathbb{R}^{n}$. Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and let $a \in \mathbb{R}$. Then

$$
\mathrm{T}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A} \overrightarrow{\mathrm{x}}+\mathrm{A} \overrightarrow{\mathrm{y}}=\mathrm{T}(\overrightarrow{\mathrm{x}})+\mathrm{T}(\overrightarrow{\mathrm{y}})
$$

Theorem

Every matrix transformation is a linear transformation.

Proof.

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a matrix transformation induced by the $\mathrm{m} \times \mathrm{n}$ matrix A, i.e., $\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}$ for each $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. Let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}} \in \mathbb{R}^{\mathrm{n}}$ and let $\mathrm{a} \in \mathbb{R}$. Then

$$
\mathrm{T}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A} \overrightarrow{\mathrm{x}}+\mathrm{A} \overrightarrow{\mathrm{y}}=\mathrm{T}(\overrightarrow{\mathrm{x}})+\mathrm{T}(\overrightarrow{\mathrm{y}}),
$$

proving that T preserves addition.

Theorem

Every matrix transformation is a linear transformation.

Proof.

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a matrix transformation induced by the $\mathrm{m} \times \mathrm{n}$ matrix A, i.e., $\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}$ for each $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$. Let $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}} \in \mathbb{R}^{\mathrm{n}}$ and let $\mathrm{a} \in \mathbb{R}$. Then

$$
\mathrm{T}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A} \overrightarrow{\mathrm{x}}+\mathrm{A} \overrightarrow{\mathrm{y}}=\mathrm{T}(\overrightarrow{\mathrm{x}})+\mathrm{T}(\overrightarrow{\mathrm{y}})
$$

proving that T preserves addition. Also,

Theorem

Every matrix transformation is a linear transformation.

Proof.

Suppose $T: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a matrix transformation induced by the $\mathrm{m} \times \mathrm{n}$ matrix A, i.e., $T(\vec{x})=A \vec{x}$ for each $\vec{x} \in \mathbb{R}^{n}$. Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and let $a \in \mathbb{R}$. Then

$$
\mathrm{T}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A} \overrightarrow{\mathrm{x}}+\mathrm{A} \overrightarrow{\mathrm{y}}=\mathrm{T}(\overrightarrow{\mathrm{x}})+\mathrm{T}(\overrightarrow{\mathrm{y}})
$$

proving that T preserves addition. Also,

$$
\mathrm{T}(\mathrm{a} \overrightarrow{\mathrm{x}})=\mathrm{A}(\mathrm{ar})=\mathrm{a}(\mathrm{~A} \overrightarrow{\mathrm{x}})=\mathrm{aT}(\overrightarrow{\mathrm{x}})
$$

Theorem

Every matrix transformation is a linear transformation.

Proof.

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation induced by the $m \times n$ matrix A, i.e., $T(\vec{x})=A \vec{x}$ for each $\vec{x} \in \mathbb{R}^{n}$. Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and let $a \in \mathbb{R}$. Then

$$
\mathrm{T}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A} \overrightarrow{\mathrm{x}}+\mathrm{A} \overrightarrow{\mathrm{y}}=\mathrm{T}(\overrightarrow{\mathrm{x}})+\mathrm{T}(\overrightarrow{\mathrm{y}})
$$

proving that T preserves addition. Also,

$$
\mathrm{T}(\mathrm{a} \overrightarrow{\mathrm{x}})=\mathrm{A}(\mathrm{a} \overrightarrow{\mathrm{x}})=\mathrm{a}(\mathrm{~A} \overrightarrow{\mathrm{x}})=\mathrm{aT}(\overrightarrow{\mathrm{x}})
$$

proving that T preserves scalar multiplication.

Theorem

Every matrix transformation is a linear transformation.
Proof.
Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation induced by the $m \times n$ matrix A, i.e., $T(\vec{x})=A \vec{x}$ for each $\vec{x} \in \mathbb{R}^{n}$. Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and let $a \in \mathbb{R}$. Then

$$
\mathrm{T}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A}(\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}})=\mathrm{A} \overrightarrow{\mathrm{x}}+\mathrm{A} \overrightarrow{\mathrm{y}}=\mathrm{T}(\overrightarrow{\mathrm{x}})+\mathrm{T}(\overrightarrow{\mathrm{y}})
$$

proving that T preserves addition. Also,

$$
\mathrm{T}(\mathrm{a} \overrightarrow{\mathrm{x}})=\mathrm{A}(\mathrm{a} \overrightarrow{\mathrm{x}})=\mathrm{a}(\mathrm{~A} \overrightarrow{\mathrm{x}})=\mathrm{aT}(\overrightarrow{\mathrm{x}})
$$

proving that T preserves scalar multiplication.
Since T preserves addition and scalar multiplication T is a linear transformation.

Example (The Zero Transformation)

If A is the $\mathrm{m} \times \mathrm{n}$ matrix of zeros, then the transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ induced by A is called the zero transformation because for every vector $\overrightarrow{\mathrm{x}}$ in \mathbb{R}^{n}

$$
\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}=\mathrm{O} \overrightarrow{\mathrm{x}}=\overrightarrow{0} .
$$

Example (The Zero Transformation)

If A is the $\mathrm{m} \times \mathrm{n}$ matrix of zeros, then the transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ induced by A is called the zero transformation because for every vector $\overrightarrow{\mathrm{x}}$ in \mathbb{R}^{n}

$$
\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}=\mathrm{O} \overrightarrow{\mathrm{x}}=\overrightarrow{0}
$$

The zero transformation is usually written as $\mathrm{T}=0$.

Example (The Zero Transformation)

If A is the $\mathrm{m} \times \mathrm{n}$ matrix of zeros, then the transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ induced by A is called the zero transformation because for every vector $\overrightarrow{\mathrm{x}}$ in \mathbb{R}^{n}

$$
\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}=\mathrm{O} \overrightarrow{\mathrm{x}}=\overrightarrow{0}
$$

The zero transformation is usually written as $\mathrm{T}=0$.

Example (The Identity Transformation)
The transformation of \mathbb{R}^{n} induced by I_{n}, the $\mathrm{n} \times \mathrm{n}$ identity matrix, is called the identity transformation because for every vector $\overrightarrow{\mathrm{x}}$ in \mathbb{R}^{n},

$$
\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{I}_{\mathrm{n}} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}} .
$$

Example (The Zero Transformation)

If A is the $\mathrm{m} \times \mathrm{n}$ matrix of zeros, then the transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ induced by A is called the zero transformation because for every vector $\overrightarrow{\mathrm{x}}$ in \mathbb{R}^{n}

$$
\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}=\mathrm{O} \overrightarrow{\mathrm{x}}=\overrightarrow{0}
$$

The zero transformation is usually written as $\mathrm{T}=0$.

Example (The Identity Transformation)
The transformation of \mathbb{R}^{n} induced by I_{n}, the $\mathrm{n} \times \mathrm{n}$ identity matrix, is called the identity transformation because for every vector $\overrightarrow{\mathrm{x}}$ in \mathbb{R}^{n},

$$
\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{I}_{\mathrm{n}} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}}
$$

The identity transformation on \mathbb{R}^{n} is usually written as $1_{\mathbb{R}^{n}}$.

Problem (Revisited)

Is the following $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ a matrix transformation?

$$
T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
$$

Problem (Revisited)

Is the following $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ a matrix transformation?

$$
T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
$$

Solution

$$
A\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]=T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Problem (Revisited)

Is the following $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ a matrix transformation?

$$
T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
$$

Solution

$$
A\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]=T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Yes, T is a matrix transformation.

Problem (Not all transformations are matrix transformations)
Consider $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\vec{x})=\vec{x}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { for all } \vec{x} \in \mathbb{R}^{2} .
$$

Show that T NOT a matrix transformation.

Solution
We have $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\vec{x})=\vec{x}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { for all } \vec{x} \in \mathbb{R}^{2} .
$$

Solution
We have $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\vec{x})=\vec{x}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { for all } \vec{x} \in \mathbb{R}^{2}
$$

Since every matrix transformation is a linear transformation,

Solution
We have $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\vec{x})=\vec{x}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { for all } \vec{x} \in \mathbb{R}^{2} .
$$

Since every matrix transformation is a linear transformation, we consider $T(0)$, where 0 is the zero vector of \mathbb{R}^{2}.

Solution
We have $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\vec{x})=\vec{x}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { for all } \vec{x} \in \mathbb{R}^{2} .
$$

Since every matrix transformation is a linear transformation, we consider $T(0)$, where 0 is the zero vector of \mathbb{R}^{2}.

$$
\mathrm{T}\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Solution
We have $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\vec{x})=\vec{x}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { for all } \vec{x} \in \mathbb{R}^{2} .
$$

Since every matrix transformation is a linear transformation, we consider $T(0)$, where 0 is the zero vector of \mathbb{R}^{2}.

$$
\mathrm{T}\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

Solution
We have $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\vec{x})=\vec{x}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { for all } \vec{x} \in \mathbb{R}^{2} .
$$

Since every matrix transformation is a linear transformation, we consider $T(0)$, where 0 is the zero vector of \mathbb{R}^{2}.

$$
\mathrm{T}\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

Solution
We have $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\vec{x})=\vec{x}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { for all } \vec{x} \in \mathbb{R}^{2} .
$$

Since every matrix transformation is a linear transformation, we consider $T(0)$, where 0 is the zero vector of \mathbb{R}^{2}.

$$
\mathrm{T}\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

violating one of the properties of a linear transformation.

Solution
We have $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\vec{x})=\vec{x}+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { for all } \vec{x} \in \mathbb{R}^{2} .
$$

Since every matrix transformation is a linear transformation, we consider $T(0)$, where 0 is the zero vector of \mathbb{R}^{2}.

$$
\mathrm{T}\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

violating one of the properties of a linear transformation.
Therefore, T is not a linear transformation, and hence is not a matrix transformation.

Remark

Recall that a transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation if it satisfies the following two properties for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and all (scalars) $a \in \mathbb{R}$.

Remark

Recall that a transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation if it satisfies the following two properties for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and all (scalars) $\mathrm{a} \in \mathbb{R}$.

1. $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$

Remark

Recall that a transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation if it satisfies the following two properties for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and all (scalars) $\mathrm{a} \in \mathbb{R}$.

1. $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
(preservation of addition)
2. $T(a \vec{x})=a T(\vec{x})$

Remark

Recall that a transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation if it satisfies the following two properties for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and all (scalars) $a \in \mathbb{R}$.

1. $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
2. $T(a \vec{x})=a T(\vec{x})$

Theorem (Every Linear Transformation is a Matrix Transformation)
Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation. Then we can find an $\mathrm{n} \times \mathrm{m}$ matrix A such that

$$
\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}
$$

Remark

Recall that a transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation if it satisfies the following two properties for all $\vec{x}, \vec{y} \in \mathbb{R}^{\mathrm{n}}$ and all (scalars) $a \in \mathbb{R}$.

1. $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$
2. $T(a \vec{x})=a T(\vec{x})$

Theorem (Every Linear Transformation is a Matrix Transformation)
Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation. Then we can find an $\mathrm{n} \times \mathrm{m}$ matrix A such that

$$
\mathrm{T}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}
$$

In this case, we say that T is induced, or determined, by A and we write

$$
\mathrm{T}_{\mathrm{A}}(\overrightarrow{\mathrm{x}})=\mathrm{A} \overrightarrow{\mathrm{x}}
$$

Problem

The transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by

$$
T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{3}$ is another matrix transformation, that is, $T(\vec{x})=A \vec{x}$ for some matrix A. Can you find a matrix A that works?

Problem

The transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by

$$
T\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a+b \\
b+c \\
a-c \\
c-b
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{3}$ is another matrix transformation, that is, $T(\vec{x})=A \vec{x}$ for some matrix A. Can you find a matrix A that works?

Solution

First, since $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$, we know that A must have size

Solution

First, since $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$, we know that A must have size 4×3.

Solution

First, since $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$, we know that A must have size 4×3. Now consider the product

$$
\left[\begin{array}{lll}
? & ? & ? \\
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{a}+\mathrm{b} \\
\mathrm{~b}+\mathrm{c} \\
\mathrm{a}-\mathrm{c} \\
\mathrm{c}-\mathrm{b}
\end{array}\right]
$$

and try to fill in the values of the matrix.

Solution

First, since $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$, we know that A must have size 4×3. Now consider the product

$$
\left[\begin{array}{lll}
? & ? & ? \\
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{a}+\mathrm{b} \\
\mathrm{~b}+\mathrm{c} \\
\mathrm{a}-\mathrm{c} \\
\mathrm{c}-\mathrm{b}
\end{array}\right]
$$

and try to fill in the values of the matrix.

We can deduce from the product that T is induced by the matrix

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Linear Transformations

Finding the Matrix of a Linear Transformation

Composition of Linear Transformations

Rotations and Reflections in \mathbb{R}^{2}

Finding the Matrix of a Linear Transformation

Finding the Matrix of a Linear Transformation

Is there an easier way to find the matrix of T ?

Finding the Matrix of a Linear Transformation

Is there an easier way to find the matrix of T? For some transformations guess and check will work, but this is not an efficient method. The next theorem gives a method for finding the matrix of T .

Finding the Matrix of a Linear Transformation

Is there an easier way to find the matrix of T? For some transformations guess and check will work, but this is not an efficient method. The next theorem gives a method for finding the matrix of T .

Definition

The set of columns $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ of I_{n} is called the standard basis of \mathbb{R}^{n}.

Theorem (Matrix of a Linear Transformation)
Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation.

Theorem (Matrix of a Linear Transformation)
Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation. Then T is a matrix transformation.

Theorem (Matrix of a Linear Transformation)
Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation. Then T is a matrix transformation. Furthermore, T is induced by the unique matrix

$$
\mathrm{A}=\left[\begin{array}{llll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right) & \cdots & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{\mathrm{n}}\right)
\end{array}\right],
$$

where \vec{e}_{j} is the j -th column of I_{n}, and $\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{\mathrm{j}}\right)$ is the j -th column of A .

Theorem (Matrix of a Linear Transformation)
Let $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ be a linear transformation. Then T is a matrix transformation. Furthermore, T is induced by the unique matrix

$$
\mathrm{A}=\left[\begin{array}{llll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right) & \cdots & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{\mathrm{n}}\right)
\end{array}\right],
$$

where \vec{e}_{j} is the j -th column of I_{n}, and $\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{\mathrm{j}}\right)$ is the j -th column of A .

Corollary
A transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ is a linear transformation if and only if it is a matrix transformation.
"linear" = "matrix"

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+2 y \\
x-y
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{2}$. Find the matrix, A , of T .

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{x}+2 \mathrm{y} \\
\mathrm{x}-\mathrm{y}
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{2}$. Find the matrix, A , of T .

Solution
$\mathrm{T}\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+2 y \\
x-y
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{2}$. Find the matrix, A, of T.

Solution
$\mathrm{T}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}1+2(0) \\ 1-0\end{array}\right]$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+2 y \\
x-y
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{2}$. Find the matrix, A, of T.

Solution
$\mathrm{T}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}1+2(0) \\ 1-0\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+2 y \\
x-y
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{2}$. Find the matrix, A, of T.

Solution

$$
\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1+2(0) \\
1-0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+2 y \\
x-y
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{2}$. Find the matrix, A, of T.

Solution

$$
\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1+2(0) \\
1-0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0+2(1) \\
0-1
\end{array}\right]
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
\mathrm{T}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{x}+2 \mathrm{y} \\
\mathrm{x}-\mathrm{y}
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{2}$. Find the matrix, A, of T.

Solution
$\mathrm{T}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}1+2(0) \\ 1-0\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad$ and $\mathrm{T}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}0+2(1) \\ 0-1\end{array}\right]=\left[\begin{array}{c}2 \\ -1\end{array}\right]$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by

$$
\mathrm{T}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{x}+2 \mathrm{y} \\
\mathrm{x}-\mathrm{y}
\end{array}\right]
$$

for each $\vec{x} \in \mathbb{R}^{2}$. Find the matrix, A, of T.

Solution

$$
\begin{gathered}
\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1+2(0) \\
1-0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0+2(1) \\
0-1
\end{array}\right]=\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \\
\Downarrow \\
\mathrm{A}=\left[\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right]
\end{gathered}
$$

Sometimes, T is defined through its actions several concrete vectors.

Problem

Find the matrix A of T where T is given as

$$
\mathrm{T}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad \mathrm{T}\left[\begin{array}{r}
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

Solution (continued)
We need to write $\overrightarrow{\mathrm{e}}_{1}$ and $\overrightarrow{\mathrm{e}}_{2}$ as a linear combination of the vectors provided. First, find x and y such that

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\mathrm{x}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\mathrm{y}\left[\begin{array}{r}
0 \\
-1
\end{array}\right]
$$

Solution (continued)
We need to write $\overrightarrow{\mathrm{e}}_{1}$ and $\overrightarrow{\mathrm{e}}_{2}$ as a linear combination of the vectors provided. First, find x and y such that

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=x\left[\begin{array}{l}
1 \\
1
\end{array}\right]+y\left[\begin{array}{r}
0 \\
-1
\end{array}\right]
$$

Once we find x and y we can compute

$$
\begin{aligned}
\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right] & =\mathrm{xT}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\mathrm{yT}\left[\begin{array}{r}
0 \\
-1
\end{array}\right] \\
& =x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\mathrm{y}\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{aligned}
$$

Solution (continued)
Finding x and y involves solving the following system of equations.

$$
\begin{gathered}
x=1 \\
x-y=0
\end{gathered}
$$

Solution (continued)
Finding x and y involves solving the following system of equations.

$$
\begin{gathered}
x=1 \\
x-y=0
\end{gathered}
$$

The solution is $\mathrm{x}=1, \mathrm{y}=1$.

Solution (continued)
Finding x and y involves solving the following system of equations.

$$
\begin{gathered}
x=1 \\
x-y=0
\end{gathered}
$$

The solution is $\mathrm{x}=1, \mathrm{y}=1$. Hence, we can find $\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right)$ as follows.

$$
\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1\left[\begin{array}{l}
1 \\
2
\end{array}\right]+1\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right] .
$$

As for $\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right)$,

$$
\begin{gathered}
\mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=-\mathrm{T}\left[\begin{array}{r}
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right] . \\
\Downarrow \\
\mathrm{A}=\left[\begin{array}{ll}
4 & -3 \\
4 & -2
\end{array}\right]
\end{gathered}
$$

Problem

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a transformation defined by $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}2 \mathrm{x} \\ \mathrm{y} \\ -\mathrm{x}+2 \mathrm{y}\end{array}\right]$.
Is T a linear transformation?

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}2 \mathrm{x} \\ \mathrm{y} \\ -\mathrm{x}+2 \mathrm{y}\end{array}\right]$.
Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}2 \mathrm{x} \\ \mathrm{y} \\ -\mathrm{x}+2 \mathrm{y}\end{array}\right]$.
Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right)
\end{array}\right]
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}2 \mathrm{x} \\ \mathrm{y} \\ -\mathrm{x}+2 \mathrm{y}\end{array}\right]$. Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\left.\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
\end{array}\right.
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}2 \mathrm{x} \\ \mathrm{y} \\ -\mathrm{x}+2 \mathrm{y}\end{array}\right]$. Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right)
\end{array}\right]=\left[\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]=\left[\begin{array}{rr}
2 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right]
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}2 \mathrm{x} \\ \mathrm{y} \\ -\mathrm{x}+2 \mathrm{y}\end{array}\right]$. Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right)
\end{array}\right]=\left[\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]=\left[\begin{array}{rr}
2 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right]
$$

It remains to verify the matrix transform induced by A indeed coincides with T :

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
2 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 x \\
y \\
-x+2 y
\end{array}\right]=T\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Therefore, T is a matrix transformation induced by A above.

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}\mathrm{xy} \\ \mathrm{x}+\mathrm{y}\end{array}\right]$. Is T a linear transformation?

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}\mathrm{xy} \\ \mathrm{x}+\mathrm{y}\end{array}\right]$. Is T a linear transformation?

Solution

If T were a linear transformation, then T would be induced by the matrix

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}\mathrm{xy} \\ \mathrm{x}+\mathrm{y}\end{array}\right]$. Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right)
\end{array}\right]
$$

Problem

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x y \\ x+y\end{array}\right]$. Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right)
\end{array}\right]=\left[\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
$$

Problem

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x y \\ x+y\end{array}\right]$. Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right)
\end{array}\right]=\left[\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right] .
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}\mathrm{xy} \\ \mathrm{x}+\mathrm{y}\end{array}\right]$. Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{T}\left(\overrightarrow{\mathrm{e}}_{1}\right) & \mathrm{T}\left(\overrightarrow{\mathrm{e}}_{2}\right)
\end{array}\right]=\left[\mathrm{T}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathrm{T}\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right] .
$$

However, the matrix transform induced by A doesn't pass the verification:

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
x+y
\end{array}\right] \neq\left[\begin{array}{c}
x y \\
x+y
\end{array}\right]=T\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Problem

Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a transformation defined by $\mathrm{T}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}\mathrm{xy} \\ \mathrm{x}+\mathrm{y}\end{array}\right]$. Is T a linear transformation?

Solution
If T were a linear transformation, then T would be induced by the matrix

However, the matrix transform induced by A doesn't pass the verification:

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
x+y
\end{array}\right] \neq\left[\begin{array}{c}
x y \\
x+y
\end{array}\right]=T\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Therefore, T in NOT a linear transformation.

Linear Transformations

Finding the Matrix of a Linear Transformation

Composition of Linear Transformations

Rotations and Reflections in \mathbb{R}^{2}

Composition of Linear Transformations

Composition of Linear Transformations

Definition

Suppose $T: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ are linear transformations.

Composition of Linear Transformations

Definition

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ are linear transformations. The composite (or composition) of S and T is

$$
\mathrm{S} \circ \mathrm{~T}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{m}},
$$

Composition of Linear Transformations

Definition

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ are linear transformations. The composite (or composition) of S and T is

$$
\mathrm{S} \circ \mathrm{~T}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{m}},
$$

is defined by

$$
(\mathrm{S} \circ \mathrm{~T})(\overrightarrow{\mathrm{x}})=\mathrm{S}(\mathrm{~T}(\overrightarrow{\mathrm{x}})) \text { for all } \overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{k}} .
$$

Composition of Linear Transformations

Definition

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ are linear transformations. The composite (or composition) of S and T is

$$
\mathrm{S} \circ \mathrm{~T}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{m}},
$$

is defined by

$$
(\mathrm{S} \circ \mathrm{~T})(\overrightarrow{\mathrm{x}})=\mathrm{S}(\mathrm{~T}(\overrightarrow{\mathrm{x}})) \text { for all } \overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{k}}
$$

Composition of Linear Transformations

Definition

Suppose $\mathrm{T}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{n}}$ and $\mathrm{S}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ are linear transformations. The composite (or composition) of S and T is

$$
\mathrm{S} \circ \mathrm{~T}: \mathbb{R}^{\mathrm{k}} \rightarrow \mathbb{R}^{\mathrm{m}},
$$

is defined by

$$
(\mathrm{S} \circ \mathrm{~T})(\overrightarrow{\mathrm{x}})=\mathrm{S}(\mathrm{~T}(\overrightarrow{\mathrm{x}})) \text { for all } \overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{k}}
$$

Remark (Convention on the order)

$\mathrm{S} \circ \mathrm{T}$ means that the transformation T is applied first, followed by the transformation S.

Theorem

Let $\mathbb{R}^{\mathrm{k}} \xrightarrow{\mathrm{T}} \mathbb{R}^{\mathrm{n}} \xrightarrow{\mathrm{S}} \mathbb{R}^{\mathrm{m}}$ be linear transformations, and suppose that S is induced by matrix A , and T is induced by matrix B . Then $\mathrm{S} \circ \mathrm{T}$ is a linear transformation, and $\mathrm{S} \circ \mathrm{T}$ is induced by the matrix AB .

Theorem

Let $\mathbb{R}^{\mathrm{k}} \xrightarrow{\mathrm{T}} \mathbb{R}^{\mathrm{n}} \xrightarrow{\mathrm{S}} \mathbb{R}^{\mathrm{m}}$ be linear transformations, and suppose that S is induced by matrix A , and T is induced by matrix B . Then $\mathrm{S} \circ \mathrm{T}$ is a linear transformation, and $\mathrm{S} \circ \mathrm{T}$ is induced by the matrix AB .

Problem

Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear transformations defined by

$$
S\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
-y
\end{array}\right] \text { and } T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-y \\
x
\end{array}\right] \text { for all }\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2} .
$$

Find $\mathrm{S} \circ \mathrm{T}$.

Solution
Then S and T are induced by matrices

$$
A=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right],
$$

respectively.

Solution
Then S and T are induced by matrices

$$
A=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

respectively. The composite of S and T is the transformation $\mathrm{S} \circ \mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Solution

Then S and T are induced by matrices

$$
A=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

respectively. The composite of S and T is the transformation $\mathrm{S} \circ \mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
(S \circ T)\left[\begin{array}{l}
x \\
y
\end{array}\right]=S\left(T\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]\right),
$$

Solution

Then S and T are induced by matrices

$$
A=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

respectively. The composite of S and T is the transformation $\mathrm{S} \circ \mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
(S \circ T)\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\mathrm{S}\left(\mathrm{~T}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]\right),
$$

and has matrix (or is induced by the matrix)

$$
\mathrm{AB}=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right] .
$$

Example (continued)

Therefore the composite of S and T is the linear transformation

$$
(S \circ T)\left[\begin{array}{l}
x \\
y
\end{array}\right]=A B\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-y \\
-x
\end{array}\right],
$$

for all $\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right] \in \mathbb{R}^{2}$.

Example (continued)

Therefore the composite of S and T is the linear transformation

$$
(\mathrm{S} \circ \mathrm{~T})\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\mathrm{AB}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
-\mathrm{y} \\
-\mathrm{x}
\end{array}\right],
$$

for all $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}$.

Remark

Compare this with the composite of T and S which is the linear transformation

$$
(\mathrm{T} \circ \mathrm{~S})\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{y} \\
\mathrm{x}
\end{array}\right]
$$

for all $\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right] \in \mathbb{R}^{2}$.

Linear Transformations

Finding the Matrix of a Linear Transformation

Composition of Linear Transformations

Rotations and Reflections in \mathbb{R}^{2}

Rotations in \mathbb{R}^{2}

Rotations in \mathbb{R}^{2}

The rest part is an application of the linear transform to the study of the rotations in \mathbb{R}^{2}. This is left your motivated students to study by themselves.

Rotations in \mathbb{R}^{2}

The rest part is an application of the linear transform to the study of the rotations in \mathbb{R}^{2}. This is left your motivated students to study by themselves.

Definition

The transformation

$$
\mathrm{R}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

denotes counterclockwise rotation about the origin through an angle of θ.

Rotations in \mathbb{R}^{2}

The rest part is an application of the linear transform to the study of the rotations in \mathbb{R}^{2}. This is left your motivated students to study by themselves.

Definition

The transformation

$$
\mathrm{R}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

denotes counterclockwise rotation about the origin through an angle of θ.

Rotation through an angle of θ preserves scalar multiplication.

Rotations in \mathbb{R}^{2}

The rest part is an application of the linear transform to the study of the rotations in \mathbb{R}^{2}. This is left your motivated students to study by themselves.

Definition

The transformation

$$
\mathrm{R}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

denotes counterclockwise rotation about the origin through an angle of θ.

Rotation through an angle of θ preserves scalar multiplication.

Rotation through an angle of θ preserves vector addition.
R_{θ} is a linear transformation
Since R_{θ} preserves addition and scalar multiplication, R_{θ} is a linear transformation, and hence a matrix transformation.

The matrix that induces R_{θ} can be found by computing $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)$ and $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{2}\right)$, where

$$
\overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

R_{θ} is a linear transformation
Since R_{θ} preserves addition and scalar multiplication, R_{θ} is a linear transformation, and hence a matrix transformation.

The matrix that induces R_{θ} can be found by computing $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)$ and $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{2}\right)$, where

$$
\begin{aligned}
& \overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \\
& \mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)
\end{aligned}
$$

R_{θ} is a linear transformation
Since R_{θ} preserves addition and scalar multiplication, R_{θ} is a linear transformation, and hence a matrix transformation.

The matrix that induces R_{θ} can be found by computing $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)$ and $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{2}\right)$, where

$$
\begin{aligned}
& \overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \\
& \mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)=\mathrm{R}_{\theta}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

R_{θ} is a linear transformation
Since R_{θ} preserves addition and scalar multiplication, R_{θ} is a linear transformation, and hence a matrix transformation.

The matrix that induces R_{θ} can be found by computing $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)$ and $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{2}\right)$, where

$$
\begin{aligned}
& \overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \\
& \mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)=\mathrm{R}_{\theta}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right],
\end{aligned}
$$

R_{θ} is a linear transformation
Since R_{θ} preserves addition and scalar multiplication, R_{θ} is a linear transformation, and hence a matrix transformation.

The matrix that induces R_{θ} can be found by computing $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)$ and $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{2}\right)$, where

$$
\begin{aligned}
& \overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \\
& \mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)=\mathrm{R}_{\theta}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right],
\end{aligned}
$$

and

$$
\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{2}\right)
$$

R_{θ} is a linear transformation
Since R_{θ} preserves addition and scalar multiplication, R_{θ} is a linear transformation, and hence a matrix transformation.

The matrix that induces R_{θ} can be found by computing $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)$ and $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{2}\right)$, where

$$
\begin{aligned}
& \overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \\
& \mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)=\mathrm{R}_{\theta}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right],
\end{aligned}
$$

and

$$
\mathrm{R}_{\theta}\left(\vec{e}_{2}\right)=\mathrm{R}_{\theta}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

R_{θ} is a linear transformation
Since R_{θ} preserves addition and scalar multiplication, R_{θ} is a linear transformation, and hence a matrix transformation.

The matrix that induces R_{θ} can be found by computing $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)$ and $\mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{2}\right)$, where

$$
\begin{aligned}
& \overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \\
& \mathrm{R}_{\theta}\left(\overrightarrow{\mathrm{e}}_{1}\right)=\mathrm{R}_{\theta}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right],
\end{aligned}
$$

and

$$
\mathrm{R}_{\theta}\left(\vec{e}_{2}\right)=\mathrm{R}_{\theta}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

The Matrix for R_{θ}
The rotation $\mathrm{R}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and is induced by the matrix

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

We see that $R_{\pi}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{l}-\mathrm{a} \\ -\mathrm{b}\end{array}\right]=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so R_{π} is a matrix transformation.

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

We see that $R_{\pi}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{l}-\mathrm{a} \\ -\mathrm{b}\end{array}\right]=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so R_{π} is a matrix transformation.

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

We see that $\mathrm{R}_{\pi}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{l}-\mathrm{a} \\ -\mathrm{b}\end{array}\right]=$

Example (Rotation through π)

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

We see that $R_{\pi}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}-\mathrm{a} \\ -\mathrm{b}\end{array}\right]=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so R_{π} is a matrix transformation.

Problem

The transformation $R \frac{\pi}{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denotes a counterclockwise rotation about the origin through an angle of $\frac{\pi}{2}$ radians. Find the matrix of $\mathrm{R}_{\frac{\pi}{2}}$.

Problem

The transformation $R \frac{\pi}{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denotes a counterclockwise rotation about the origin through an angle of $\frac{\pi}{2}$ radians. Find the matrix of $\mathrm{R}_{\frac{\pi}{2}}$.

Solution
First,

$$
R_{\frac{\pi}{2}}\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{r}
-\mathrm{b} \\
\mathrm{a}
\end{array}\right]
$$

Problem

The transformation $\mathrm{R}_{\frac{\pi}{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denotes a counterclock wise rotation about the origin through an angle of $\frac{\pi}{2}$ radians. Find the matrix of $\mathrm{R}_{\frac{\pi}{2}}$.

Solution
First,

$$
\mathrm{R}_{\frac{\pi}{2}}\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right]=\left[\begin{array}{r}
-\mathrm{b} \\
\mathrm{a}
\end{array}\right]
$$

Furthermore $\mathrm{R}_{\frac{\pi}{2}}$ is a matrix transformation, and the matrix it is induced by is

$$
\left[\begin{array}{c}
-\mathrm{b} \\
\mathrm{a}
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right] .
$$

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

We see that $R_{\pi / 2}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}-\mathrm{b} \\ \mathrm{a}\end{array}\right]=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so $\mathrm{R}_{\pi / 2}$ is a matrix transformation.

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

We see that $R_{\pi / 2}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}-\mathrm{b} \\ \mathrm{a}\end{array}\right]=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so $\mathrm{R}_{\pi / 2}$ is a matrix transformation.

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

We see that $\mathrm{R}_{\pi / 2}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}-\mathrm{b} \\ \mathrm{a}\end{array}\right]=$

Example (Rotation through $\pi / 2$)
We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

We see that $R_{\pi / 2}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}-\mathrm{b} \\ \mathrm{a}\end{array}\right]=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so $\mathrm{R}_{\pi / 2}$ is a matrix transformation.

Reflection in \mathbb{R}^{2}

Reflection in \mathbb{R}^{2}

Example

In \mathbb{R}^{2}, reflection in the x -axis, which transforms $\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$ to $\left[\begin{array}{r}\mathrm{a} \\ -\mathrm{b}\end{array}\right]$, is a matrix transformation because

$$
\left[\begin{array}{r}
\mathrm{a} \\
-\mathrm{b}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right] .
$$

Reflection in \mathbb{R}^{2}

Example

In \mathbb{R}^{2}, reflection in the x -axis, which transforms $\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$ to $\left[\begin{array}{r}\mathrm{a} \\ -\mathrm{b}\end{array}\right]$, is a matrix transformation because

$$
\left[\begin{array}{r}
\mathrm{a} \\
-\mathrm{b}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right] .
$$

Example

In \mathbb{R}^{2}, reflection in the y-axis transforms $\left[\begin{array}{l}\text { a } \\ \mathrm{b}\end{array}\right]$ to $\left[\begin{array}{r}-\mathrm{a} \\ \mathrm{b}\end{array}\right]$. This is a matrix transformation because

$$
\left[\begin{array}{r}
-\mathrm{a} \\
\mathrm{~b}
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right] .
$$

Example

Reflection in the line $\mathrm{y}=\mathrm{x}$ transforms $\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$ to $\left[\begin{array}{l}\mathrm{b} \\ \mathrm{a}\end{array}\right]$.

Example

Reflection in the line $\mathrm{y}=\mathrm{x}$ transforms $\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$ to $\left[\begin{array}{l}\mathrm{b} \\ \mathrm{a}\end{array}\right]$.

Example

Reflection in the line $\mathrm{y}=\mathrm{x}$ transforms $\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$ to $\left[\begin{array}{l}\mathrm{b} \\ \mathrm{a}\end{array}\right]$.

This is a matrix transformation because

$$
\left[\begin{array}{c}
\mathrm{b} \\
\mathrm{a}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right]
$$

Reflection in the line

Reflection in the line

Example (Reflection in $\mathrm{y}=\mathrm{mx}$ preserves scalar multiplication)
Let $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection in the line $\mathrm{y}=\mathrm{mx}$, and let $\overrightarrow{\mathrm{u}} \in \mathbb{R}^{2}$.

Reflection in the line

Example (Reflection in $\mathrm{y}=\mathrm{mx}$ preserves scalar multiplication)
Let $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection in the line $\mathrm{y}=\mathrm{mx}$, and let $\overrightarrow{\mathrm{u}} \in \mathbb{R}^{2}$.

Reflection in the line

Example (Reflection in $y=m x$ preserves scalar multiplication)
Let $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection in the line $\mathrm{y}=\mathrm{mx}$, and let $\overrightarrow{\mathrm{u}} \in \mathbb{R}^{2}$.

Reflection in the line

Example (Reflection in $y=m x$ preserves scalar multiplication)
Let $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection in the line $\mathrm{y}=\mathrm{mx}$, and let $\overrightarrow{\mathrm{u}} \in \mathbb{R}^{2}$.

Reflection in the line

Example (Reflection in $y=m x$ preserves scalar multiplication)
Let $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection in the line $\mathrm{y}=\mathrm{mx}$, and let $\overrightarrow{\mathrm{u}} \in \mathbb{R}^{2}$.

The figure indicates that $\mathrm{Q}_{\mathrm{m}}(2 \overrightarrow{\mathrm{u}})=2 \mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}})$.

Reflection in the line

Example (Reflection in $y=m x$ preserves scalar multiplication)
Let $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection in the line $\mathrm{y}=\mathrm{mx}$, and let $\overrightarrow{\mathrm{u}} \in \mathbb{R}^{2}$.

The figure indicates that $\mathrm{Q}_{\mathrm{m}}(2 \overrightarrow{\mathrm{u}})=2 \mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}})$. In general, for any scalar k ,

$$
\mathrm{Q}_{\mathrm{m}}(\mathrm{kX})=\mathrm{kQ}_{\mathrm{m}}(\mathrm{X}),
$$

Reflection in the line

Example (Reflection in $y=m x$ preserves scalar multiplication)
Let $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection in the line $\mathrm{y}=\mathrm{mx}$, and let $\overrightarrow{\mathrm{u}} \in \mathbb{R}^{2}$.

The figure indicates that $\mathrm{Q}_{\mathrm{m}}(2 \overrightarrow{\mathrm{u}})=2 \mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}})$. In general, for any scalar k ,

$$
\mathrm{Q}_{\mathrm{m}}(\mathrm{kX})=\mathrm{kQ}_{\mathrm{m}}(\mathrm{X}),
$$

i.e., Q_{m} preserves scalar multiplication.

Example (Reflection in $y=m x$ preserves vector addition)
Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}} \in \mathbb{R}^{2}$.

Example (Reflection in $y=m x$ preserves vector addition)
Let $\vec{u}, \vec{v} \in \mathbb{R}^{2}$.

Example (Reflection in $y=m x$ preserves vector addition)
Let $\vec{u}, \vec{v} \in \mathbb{R}^{2}$.

Example (Reflection in $y=m x$ preserves vector addition) Let $\vec{u}, \vec{v} \in \mathbb{R}^{2}$.

Example (Reflection in $y=m x$ preserves vector addition) Let $\vec{u}, \vec{v} \in \mathbb{R}^{2}$.

Example (Reflection in $y=m x$ preserves vector addition)
Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}} \in \mathbb{R}^{2}$.

Example (Reflection in $y=m x$ preserves vector addition)
Let $\vec{u}, \vec{v} \in \mathbb{R}^{2}$.

The figure indicates that

$$
\mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}})+\mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{v}})=\mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}),
$$

Example (Reflection in $y=m x$ preserves vector addition)
Let $\vec{u}, \vec{v} \in \mathbb{R}^{2}$.

The figure indicates that

$$
\mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}})+\mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{v}})=\mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}})
$$

i.e., Q_{m} preserves vector addition.

Since Q_{m} preserves addition and scalar multiplication, Q_{m} is a linear transformation, and hence a matrix transformation.

Since Q_{m} preserves addition and scalar multiplication, Q_{m} is a linear transformation, and hence a matrix transformation.

The matrix that induces Q_{m} can be found by computing $Q_{m}\left(\overrightarrow{\mathrm{e}}_{1}\right)$ and $\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)$, where

$$
\overrightarrow{\mathrm{e}}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{e}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{1}\right)$

$$
\cos \theta=\frac{1}{\sqrt{1+m^{2}}} \quad \text { and } \quad \sin \theta=\frac{m}{\sqrt{1+m^{2}}}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{1}\right)$

$$
\cos \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \quad \text { and } \quad \sin \theta=\frac{m}{\sqrt{1+\mathrm{m}^{2}}}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{1}\right)$

$$
\cos \theta=\frac{1}{\sqrt{1+m^{2}}} \quad \text { and } \quad \sin \theta=\frac{m}{\sqrt{1+m^{2}}}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{1}\right)$

$$
\begin{gathered}
\cos \theta=\frac{1}{\sqrt{1+m^{2}}} \text { and } \sin \theta=\frac{m}{\sqrt{1+m^{2}}} \\
Q_{m}\left(\vec{e}_{1}\right)=\left[\begin{array}{c}
\cos (2 \theta) \\
\sin (2 \theta)
\end{array}\right]
\end{gathered}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{1}\right)$

$$
\begin{gathered}
\cos \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \quad \text { and } \quad \sin \theta=\frac{\mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}} \\
\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{1}\right)=\left[\begin{array}{c}
\cos (2 \theta) \\
\sin (2 \theta)
\end{array}\right]=\left[\begin{array}{c}
\cos ^{2} \theta-\sin ^{2} \theta \\
2 \sin \theta \cos \theta
\end{array}\right]
\end{gathered}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{1}\right)$

$$
\begin{aligned}
& \cos \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \quad \text { and } \quad \sin \theta=\frac{\mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}} \\
& \mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{1}\right)=\left[\begin{array}{c}
\cos (2 \theta) \\
\sin (2 \theta)
\end{array}\right]=\left[\begin{array}{c}
\cos ^{2} \theta-\sin ^{2} \theta \\
2 \sin \theta \cos \theta
\end{array}\right]=\frac{1}{1+\mathrm{m}^{2}}\left[\begin{array}{c}
1-\mathrm{m}^{2} \\
2 \mathrm{~m}
\end{array}\right]
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)$

$$
\cos \theta=\frac{\mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}} \quad \text { and } \quad \sin \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)$

$$
\cos \theta=\frac{m}{\sqrt{1+m^{2}}} \quad \text { and } \quad \sin \theta=\frac{1}{\sqrt{1+m^{2}}}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)$

$$
\cos \theta=\frac{m}{\sqrt{1+m^{2}}} \quad \text { and } \quad \sin \theta=\frac{1}{\sqrt{1+m^{2}}}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)$

$$
\begin{gathered}
\cos \theta=\frac{m}{\sqrt{1+\mathrm{m}^{2}}} \text { and } \sin \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \\
\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)=\left[\begin{array}{c}
\cos \left(\frac{\pi}{2}-2 \theta\right) \\
\sin \left(\frac{\pi}{2}-2 \theta\right)
\end{array}\right]
\end{gathered}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)$

$$
\begin{gathered}
\cos \theta=\frac{m}{\sqrt{1+\mathrm{m}^{2}}} \quad \text { and } \sin \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \\
\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)=\left[\begin{array}{c}
\cos \left(\frac{\pi}{2}-2 \theta\right) \\
\sin \left(\frac{\pi}{2}-2 \theta\right)
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\pi}{2} \cos (2 \theta)+\sin \frac{\pi}{2} \sin (2 \theta) \\
\sin \frac{\pi}{2} \cos (2 \theta)-\cos \frac{\pi}{2} \sin (2 \theta)
\end{array}\right]
\end{gathered}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)$

$$
\begin{aligned}
& \cos \theta=\frac{\mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}} \text { and } \sin \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \\
& \mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)= {\left[\begin{array}{l}
\cos \left(\frac{\pi}{2}-2 \theta\right) \\
\sin \left(\frac{\pi}{2}-2 \theta\right)
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\pi}{2} \cos (2 \theta)+\sin \frac{\pi}{2} \sin (2 \theta) \\
\sin \frac{\pi}{2} \cos (2 \theta)-\cos \frac{\pi}{2} \sin (2 \theta)
\end{array}\right] } \\
&= {\left[\begin{array}{l}
\sin (2 \theta) \\
\cos (2 \theta)
\end{array}\right] }
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)$

$$
\begin{aligned}
& \cos \theta=\frac{m}{\sqrt{1+\mathrm{m}^{2}}} \quad \text { and } \quad \sin \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \\
& \mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)= {\left[\begin{array}{c}
\cos \left(\frac{\pi}{2}-2 \theta\right) \\
\sin \left(\frac{\pi}{2}-2 \theta\right)
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\pi}{2} \cos (2 \theta)+\sin \frac{\pi}{2} \sin (2 \theta) \\
\sin \frac{\pi}{2} \cos (2 \theta)-\cos \frac{\pi}{2} \sin (2 \theta)
\end{array}\right] } \\
&= {\left[\begin{array}{c}
\sin (2 \theta) \\
\cos (2 \theta)
\end{array}\right]=\left[\begin{array}{c}
2 \sin \theta \cos \theta \\
\cos ^{2} \theta-\sin ^{2} \theta
\end{array}\right] }
\end{aligned}
$$

$$
\begin{gathered}
\cos \theta=\frac{\mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}} \text { and } \sin \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \\
\mathrm{Q}_{\mathrm{m}}\left(\overrightarrow{\mathrm{e}}_{2}\right)=\left[\begin{array}{c}
\cos \left(\frac{\pi}{2}-2 \theta\right) \\
\sin \left(\frac{\pi}{2}-2 \theta\right)
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\pi}{2} \cos (2 \theta)+\sin \frac{\pi}{2} \sin (2 \theta) \\
\sin \frac{\pi}{2} \cos (2 \theta)-\cos \frac{\pi}{2} \sin (2 \theta)
\end{array}\right] \\
=\left[\begin{array}{c}
\sin (2 \theta) \\
\cos (2 \theta)
\end{array}\right]=\left[\begin{array}{c}
2 \sin \theta \cos \theta \\
\cos ^{2} \theta-\sin ^{2} \theta
\end{array}\right]=\frac{1}{1+\mathrm{m}^{2}}\left[\begin{array}{c}
2 \mathrm{~m} \\
\mathrm{~m}^{2}-1
\end{array}\right]
\end{gathered}
$$

Alternatively, we can use the following relation to find Q_{m} :

$$
\mathrm{Q}_{\mathrm{m}}=\mathrm{R}_{\theta} \circ \mathrm{Q}_{0} \circ \mathrm{R}_{-\theta}
$$

Alternatively, we can use the following relation to find Q_{m} :

$$
\mathrm{Q}_{\mathrm{m}}=\mathrm{R}_{\theta} \circ \mathrm{Q}_{0} \circ \mathrm{R}_{-\theta}
$$

$$
\mathrm{R}_{\theta} \sim\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right], \quad \mathrm{Q}_{0} \sim\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \mathrm{R}_{-\theta} \sim\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right],
$$

Alternatively, we can use the following relation to find Q_{m} :

$$
\mathrm{Q}_{\mathrm{m}}=\mathrm{R}_{\theta} \circ \mathrm{Q}_{0} \circ \mathrm{R}_{-\theta}
$$

$$
\mathrm{R}_{\theta} \sim\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right], \quad \mathrm{Q}_{0} \sim\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \mathrm{R}_{-\theta} \sim\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Then multiply these three matrices ...

The Matrix for Reflection in $\mathrm{y}=\mathrm{mx}$
The transformation $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, reflection in the line $\mathrm{y}=\mathrm{mx}$, is a linear transformation and is induced by the matrix

$$
\frac{1}{1+m^{2}}\left[\begin{array}{cc}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right]
$$

Problem (Multiple Actions)

Find the rotation or reflection that equals reflection in the x -axis followed by rotation through an angle of $\frac{\pi}{2}$.

Problem (Multiple Actions)

Find the rotation or reflection that equals reflection in the x -axis followed by rotation through an angle of $\frac{\pi}{2}$.

Solution
Let Q_{0} denote the reflection in the x-axis, and $\mathrm{R}_{\frac{\pi}{2}}$ denote the rotation through an angle of $\frac{\pi}{2}$. We want to find the matrix for the transformation $R_{\frac{\pi}{2}} \circ \mathrm{Q}_{0}$.

Problem (Multiple Actions)

Find the rotation or reflection that equals reflection in the x -axis followed by rotation through an angle of $\frac{\pi}{2}$.

Solution
Let Q_{0} denote the reflection in the x-axis, and $R_{\frac{\pi}{2}}$ denote the rotation through an angle of $\frac{\pi}{2}$. We want to find the matrix for the transformation $R_{\frac{\pi}{2}} \circ \mathrm{Q}_{0}$.
Q_{0} is induced by $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$, and $R_{\frac{\pi}{2}}$ is induced by

$$
\mathrm{B}=\left[\begin{array}{rr}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Solution

Hence $R_{\frac{\pi}{2}} \circ Q_{0}$ is induced by

$$
\mathrm{BA}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Solution
Hence $R_{\frac{\pi}{2}} \circ Q_{0}$ is induced by

$$
\mathrm{BA}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Notice that $\mathrm{BA}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is a reflection matrix.

Solution
Hence $R_{\frac{\pi}{2}} \circ Q_{0}$ is induced by

$$
\mathrm{BA}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Notice that $\mathrm{BA}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is a reflection matrix.
How do we know this?

Solution (continued)
Compare BA to

$$
\mathrm{Q}_{\mathrm{m}}=\frac{1}{1+\mathrm{m}^{2}}\left[\begin{array}{cc}
1-\mathrm{m}^{2} & 2 \mathrm{~m} \\
2 \mathrm{~m} & \mathrm{~m}^{2}-1
\end{array}\right]
$$

Solution (continued)
Compare BA to

$$
Q_{\mathrm{m}}=\frac{1}{1+\mathrm{m}^{2}}\left[\begin{array}{cc}
1-\mathrm{m}^{2} & 2 \mathrm{~m} \\
2 \mathrm{~m} & \mathrm{~m}^{2}-1
\end{array}\right]
$$

Now, since $1-\mathrm{m}^{2}=0$, we know that $\mathrm{m}=1$ or $\mathrm{m}=-1$. But $\frac{2 \mathrm{~m}}{1+\mathrm{m}^{2}}=1>0$, so $m>0$, implying $m=1$.

Solution (continued)
Compare BA to

$$
Q_{\mathrm{m}}=\frac{1}{1+\mathrm{m}^{2}}\left[\begin{array}{cc}
1-\mathrm{m}^{2} & 2 \mathrm{~m} \\
2 \mathrm{~m} & \mathrm{~m}^{2}-1
\end{array}\right]
$$

Now, since $1-\mathrm{m}^{2}=0$, we know that $\mathrm{m}=1$ or $\mathrm{m}=-1$. But $\frac{2 \mathrm{~m}}{1+\mathrm{m}^{2}}=1>0$, so $\mathrm{m}>0$, implying $\mathrm{m}=1$.

Therefore,

$$
\mathrm{R}_{\frac{\pi}{2}} \circ \mathrm{Q}_{0}=\mathrm{Q}_{1}
$$

reflection in the line $\mathrm{y}=\mathrm{x}$.

Problem (Reflection followed by Reflection)

Find the rotation or reflection that equals reflection in the line $\mathrm{y}=-\mathrm{x}$ followed by reflection in the y-axis.

Problem (Reflection followed by Reflection)

Find the rotation or reflection that equals reflection in the line $\mathrm{y}=-\mathrm{x}$ followed by reflection in the y-axis.

Solution
We must find the matrix for the transformation $Q_{Y} \circ Q_{-1}$.

Problem (Reflection followed by Reflection)

Find the rotation or reflection that equals reflection in the line $\mathrm{y}=-\mathrm{x}$ followed by reflection in the y-axis.

Solution
We must find the matrix for the transformation $\mathrm{Q}_{\mathrm{Y}} \circ \mathrm{Q}_{-1}$.
Q_{-1} is induced by

$$
A=\frac{1}{2}\left[\begin{array}{rr}
0 & -2 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right],
$$

and Qy is induced by

$$
\mathrm{B}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Problem (Reflection followed by Reflection)

Find the rotation or reflection that equals reflection in the line $\mathrm{y}=-\mathrm{x}$ followed by reflection in the y-axis.

Solution
We must find the matrix for the transformation $\mathrm{Q}_{\mathrm{Y}} \circ \mathrm{Q}_{-1}$.
Q_{-1} is induced by

$$
A=\frac{1}{2}\left[\begin{array}{rr}
0 & -2 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right],
$$

and Q_{Y} is induced by

$$
\mathrm{B}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Therefore, $\mathrm{Q}_{\mathrm{Y}} \circ \mathrm{Q}_{-1}$ is induced by BA.

Solution (continued)

$$
\mathrm{BA}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

Solution (continued)

$$
\mathrm{BA}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

What transformation does BA induce?

Solution (continued)

$$
\mathrm{BA}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

What transformation does BA induce?
Rotation through an angle θ such that

$$
\cos \theta=0 \quad \text { and } \quad \sin \theta=-1
$$

Solution (continued)

$$
\mathrm{BA}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

What transformation does BA induce?
Rotation through an angle θ such that

$$
\cos \theta=0 \quad \text { and } \quad \sin \theta=-1
$$

Therefore, $\mathrm{Q}_{\mathrm{Y}} \circ \mathrm{Q}_{-1}=\mathrm{R}_{-\frac{\pi}{2}}=\mathrm{R}_{\frac{3 \pi}{2}}$.

Remark (Summary)
In general,

- The composite of two rotations is a

Remark (Summary)
In general,

- The composite of two rotations is a rotation

$$
\mathrm{R}_{\theta} \circ \mathrm{R}_{\eta}=\mathrm{R}_{\theta+\eta}
$$

Remark (Summary)

In general,

- The composite of two rotations is a rotation

$$
\mathrm{R}_{\theta} \circ \mathrm{R}_{\eta}=\mathrm{R}_{\theta+\eta}
$$

- The composite of two reflections is a

Remark (Summary)

In general,

- The composite of two rotations is a rotation

$$
\mathrm{R}_{\theta} \circ \mathrm{R}_{\eta}=\mathrm{R}_{\theta+\eta}
$$

- The composite of two reflections is a rotation.

$$
\mathrm{Q}_{\mathrm{m}} \circ \mathrm{Q}_{\mathrm{n}}=\mathrm{R}_{\theta}
$$

where θ is $2 \times$ the angle between lines $\mathrm{y}=\mathrm{mx}$ and $\mathrm{y}=\mathrm{nx}$.

Remark (Summary)

In general,

- The composite of two rotations is a rotation

$$
\mathrm{R}_{\theta} \circ \mathrm{R}_{\eta}=\mathrm{R}_{\theta+\eta}
$$

- The composite of two reflections is a rotation.

$$
\mathrm{Q}_{\mathrm{m}} \circ \mathrm{Q}_{\mathrm{n}}=\mathrm{R}_{\theta}
$$

where θ is $2 \times$ the angle between lines $\mathrm{y}=\mathrm{mx}$ and $\mathrm{y}=\mathrm{nx}$.

- The composite of a reflection and a rotation is a

Remark (Summary)

In general,

- The composite of two rotations is a rotation

$$
\mathrm{R}_{\theta} \circ \mathrm{R}_{\eta}=\mathrm{R}_{\theta+\eta}
$$

- The composite of two reflections is a rotation.

$$
\mathrm{Q}_{\mathrm{m}} \circ \mathrm{Q}_{\mathrm{n}}=\mathrm{R}_{\theta}
$$

where θ is $2 \times$ the angle between lines $y=m x$ and $y=n x$.

- The composite of a reflection and a rotation is a reflection.

$$
R_{\theta} \circ \mathrm{Q}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{m}} \circ \mathrm{Q}_{\mathrm{n}} \circ \mathrm{Q}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{m}}
$$

